Collapsibility and Vanishing of Top Homology in Random Simplicial Complexes

نویسندگان

  • Lior Aronshtam
  • Nathan Linial
  • Tomasz Luczak
  • Roy Meshulam
چکیده

Let ∆n−1 denote the (n − 1)-dimensional simplex. Let Y be a random d-dimensional subcomplex of ∆n−1 obtained by starting with the full (d − 1)-dimensional skeleton of ∆n−1 and then adding each d-simplex independently with probability p = c n . We compute an explicit constant γd, with γ2 ' 2.45, γ3 ' 3.5 and γd = Θ(log d) as d → ∞, so that for c < γd such a random simplicial complex either collapses to a (d − 1)-dimensional subcomplex or it contains ∂∆d+1, the boundary of a (d + 1)-dimensional simplex. We conjecture this bound to be sharp. In addition we show that there exists a constant γd < cd < d+ 1 such that for any c > cd and a fixed field F, asymptotically almost surely Hd(Y ; F) 6= 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATH690 - Topics in Random Topology - Literature

[1] Robert J. Adler, Omer Bobrowski, and Shmuel Weinberger. Crackle: The Homology of Noise. Discrete & Computational Geometry, 52(4):680–704, December 2014. [2] Noga Alon. On the edge-expansion of graphs. Combinatorics, Probability and Computing, 6(02):145–152, 1997. [3] Noga Alon and Joel H. Spencer. The probabilistic method. John Wiley & Sons, 2004. [4] Lior Aronshtam and Nathan Linial. The t...

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

The threshold for d-collapsibility in random complexes

In this paper we determine the threshold for d-collapsibility in the probabilistic model Xd(n, p) of d-dimensional simplicial complexes. A lower bound for this threshold p = ηd n was established in [?], and here we show that this is indeed the correct threshold. Namely, for every c > ηd, a complex drawn from Xd(n, c n ) is asymptotically almost surely not d-collapsible.

متن کامل

THE THRESHOLD FUNCTION FOR VANISHING OF THE TOP HOMOLOGY GROUP OF RANDOM d-COMPLEXES

For positive integers n and d, and the probability function 0 ≤ p(n) ≤ 1, we let Yn,p,d denote the probability space of all at most d-dimensional simplicial complexes on n vertices, which contain the full (d− 1)-dimensional skeleton, and whose d-simplices appear with probability p(n). In this paper we determine the threshold function for vanishing of the top homology group in Yn,p,d, for all d ...

متن کامل

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2013